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Abstract

In this paper, an asymptotic solution to the conjugate heat transfer problem with a flush-mounted heat source on the

fluid–solid interface, in the case that the bottom of the solid is perfectly insulated and the velocity profile in the fluid is

linear, is presented. The lowest order terms of the asymptotic solution can be naturally classified into contributions

from pure convection, from the interaction of convection and the conduction in the solid and from the interaction of

convection and the conduction in the fluid. It was found that downstream of the heat source the two leading order terms

of the asymptotic expansion stem from pure convection, and that the leading term decays as Oðx�2=3Þ, which confirms
the result from the analysis by Liu et al. [Int. J. Heat Mass Transfer 37 (17) (1994) 2809] in the case of an adiabatic wall.

The third term, however, is a contribution from the interaction of conduction in the solid and convection. If we fur-

thermore neglect the conduction in the fluid we have been able to find the asymptotic solution upstream of the heat

source as well, and in this case we find that the temperature decays exponentially with the distance from the heat source.

Our results show good agreement with numerical solutions to the problem. � 2002 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Conjugate heat transfer is a term used to describe the

class of fluid–solid problems where the heat exchange

between the fluid and the solid is a priori unknown, yet

significant. Typically, the desired unknown is the inter-

face temperature, which should be determined from

some knowledge of the heat source. Ever since Perelman

[20] coined the expression conjugate heat transfer, nu-

merous studies have been devoted to this problem. The

interest in the conjugate heat transfer problem stems not

only from the fundamental nature of the problem, but

also largely from the fact that the problem has a wide

range of applications, such as for the measurement of

wall-shear stress, for the cooling of electronic compo-

nents, for aerodynamic heating and for heat exchangers.

However, in spite of all the attempts at analysing the

problem over the last four decades, several of the

mechanisms involved have remained poorly understood.

By the development of a novel asymptotic method we are

in this paper able to provide an asymptotic solution to

the full conjugate heat transfer problem in the case when

the solid is an infinite slab, which is perfectly insulated at

the bottom, the fluid has infinite extension with a linear

velocity profile and the heat source is located in a portion

of finite length of the fluid–solid interface. By compari-

son with numerically obtained solutions, it is found that
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the asymptotic solution to be presented below accurately

describes the interface temperature both upstream and

downstream of the heat source, except, of course, in the

immediate neighbourhood of the source. Furthermore,

the asymptotic solution to be presented here can be di-

vided into contributions from convection, from con-

duction in the solid as well as in the fluid, and from

various coupled effects. In all cases, however, it is found

that far downstream of the heat source the temperature

distribution will resemble that in case of an adiabatic

wall, which is due to the fact that in case the bottom wall

of the solid is perfectly insulated, all heat will eventually

reach the fluid.

In his 1961 paper, Perelman [20] studied the laminar

flow over an internally heated flat plate with asymptotic

expansions. He identified a parameter, that combined

the ratio of the conductivities of the fluid and the solid,

the Prandtl number and the Reynolds number, which he

claimed was the essential parameter of the problem. This

work was followed up by a number of researchers, e.g.,

Luikov [17] who termed Perelman’s parameter the Brun

number, and used it in an approximate analysis involv-

ing a simplified thin-solid geometry with a linear tem-

perature distribution across the solid, i.e., a one-

dimensional model. Karvinen [10] used the integral

method to solve a problem similar to that considered by

Luikov and achieved good agreement with measured

data. In Rizk et al. [24] a theoretical analysis was made

with a uniform velocity profile (slug flow), and numeri-

cal solutions were made by Pop and Ingham [21]. In [22],

the conjugate heat transfer problem for a flush-mounted

heat source on the fluid–solid interface was introduced.

Numerical simulations on this problem were performed

by Sugavanam et al. [25]. Using a suitable boundary

element method Cole [6] made a thorough numerical

investigation of this case when the heat source distri-

bution is uniform along the entire source. The numerical

results presented here were obtained using a, perhaps

somewhat less accurate but more easily implemented

and more flexible, finite volume code. Even though our

analysis is applicable to any heat source distribution, we

have chosen to compare it with numerical solutions

having the distribution corresponding to a constant

temperature along the source.

A fundamental contribution due to Cole [6] is the

introduction of a new dimensionless number, which he

called ‘‘the conjugate Peclet-number’’, but which we will

henceforth call the Cole number, Co

Co ¼ kf
ks

Pe1=3; ð1Þ

where Pe is the Peclet number and kf and ks are the heat
conductivities of the fluid and the solid, respectively. In

this paper, we will see that, within the limitations of the

mathematical model, Cole’s parameter and the purely

geometrical quantity L=D, where L is the length of the
heat source, which is often used to non-dimensionalize all

lengths, andD is the thickness of the slab of solid, contain

all the information about the temperature on the inter-

face, provided that the distribution of heat source density

divided by ks is known, and the streamwise conduction in
the fluid is neglected. However, for the terms where

streamwise conduction in the fluid gives a contribution

the Peclet number Pe has an independent role as well.

Long before the work on conjugate heat transfer

began, several studies into the cooling of a surface

submerged in a fluid had been made, see e.g. [7,11]. The

major issue under consideration in these articles was the

relation between the shear stress and the heat transfer

into the fluid. This work was developed further with hot-

film sensors in focus by e.g., Ludwieg [16], Lighthill [13],

Liepmann and Skinner [12], Bellhouse and Schultz [3]

and Menendez and Ramaprian [18].

The conjugate heat transfer problem studied here is a

reasonable model for a hot-film sensor, used for wall-

shear stress measurements. Micro-electro-mechanical

Nomenclature

U streamwise fluid velocity

L length of the heat source

D thickness of the solid

k heat conductivity

cp specific heat of the fluid

q fluid density

Co Cole number � ðkf=ksÞPe1=3
Pe Peclet number � ðoU=oyÞjwðqcp=kfÞL2
T temperature

QTOT total amount of heat released by the heat

source

Qm1 first moment of the heat source distribution

ET total heat transfer across a plane y ¼ const
Ai Airy function of the first kind

Bi Airy function of the second kind

Greek symbol

C gamma function

Subscripts

f property for the fluid

s property for the solid

w quantity evaluated at the fluid–solid

interface

Superscript

^ Fourier transformed quantity
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systems (MEMS) have made it possible to manufacture

very small such devices (between 0.1 mm and 1 lm) with
large freedom in the choice of material that has been

utilized to improve the insulation, see e.g. [15]. Unfor-

tunately, not much progress has been made in attaining

sufficient resolution for measurements using this tech-

nique. This failure has often been blamed on insufficient

understanding of the heat transfer properties of the

sensors, and hence the analytical solution to the full

conjugate heat transfer problem presented here should

have significant implications for hot-film sensor tech-

nology.

Recently, much interest has been focused on the case

when the solid is silicon and the fluid is air. Indeed, this

is the situation for a MEMS-sensor making air mea-

surements as well as for a microelectronic circuit being

cooled. However, with this combination of materials the

numerical simulation of the conjugate heat transfer

problem becomes difficult since a very large domain

must be discretized due to the slow temperature decay

on the interface. Therefore, there has been an increased

interest in analytical methods, which have the added

advantage of providing explicit parameter dependence.

The most important analytic contribution to date is due

to Liu et al. [14], who analysed the problem of a con-

stant temperature heat source with the constraint that

the solid is a perfect insulator outside the heat source,

and managed to calculate the asymptotic solution in this

case. However, since the conduction in the solid is ir-

relevant in this case, the problem treated is strictly

speaking not a conjugate heat transfer one. The as-

ymptotic technique used by Liu et al. [14] cannot easily

be modified to allow conjugate heat transfer, therefore

we will in the present paper use a different asymptotic

technique to make it possible to take into account the

coupling between convection and conduction in the solid

as well as the conduction in the fluid in the downstream

direction. Our results give the surface temperature dis-

tribution in terms of the supplied energy, whereas Liu et

al.’s results give it in terms of the temperature of the hot-

film. If our results are combined, we obtain relations

between supplied energy and increase in temperature,

resembling that for example in [3].

2. The thermal principle

In Fig. 1, the conjugate heat transfer problem under

consideration in this article is illustrated. The heat

source is flush-mounted on a substrate submerged in a

fluid.

The ohmic heating in the heat source QTOT is trans-
ferred both to the fluid and to the surrounding substrate,

(QTOT ¼ Qf þ Qs), where Qf represents the heat trans-
ferred to the fluid directly from the heated surface (Qf1 )
and indirectly through the heated portion of the sub-

strate (Qf2 ). Qs represents the heat lost irretrievably to
the substrate. One important feature of our analytical

asymptotic solution to this problem is that contributions

to the interface temperature due to Qf1 and Qf2 are
separated. In addition, it is shown that these contribu-

tions have different parameter dependence. However, to

obtain our asymptotic solution, we must assume that the

lower wall in Fig. 1 is insulated. Note that assuming that

the lower wall is insulated is not a priori the same as

assuming that Qs is zero, since heat may escape to in-
finity at the sides of the solid slab. However, as we will

see in Section 6, Qs will indeed be zero. For this reason,
we will, when truncating the domain for the numerical

computations, insulate the solid on the side walls as well.

This introduces an error, but the method is asymptoti-

cally correct as the domain size increases.

3. Analysis

The problem we will analyse is, as is illustrated in

Fig. 1, an infinite slab of source free solid of thickness D,

which is insulated at the bottom and kept at a constant

temperature at infinity (which we may take to be zero):

o2T
ox2

þ o2T
oy2

¼ 0; oT
oy

����
y¼�D

¼ 0;

T ! 0 as xj j ! 1:

ð2Þ

Above the solid we will consider having a semi-infinite

fluid, with thermal conductivity kf , specific heat cp and
density q, which is kept at the same temperature at in-
finity as the solid. We assume that the thermal boundary

layer will submerge within the viscous sublayer 1 of the

Fig. 1. Illustration of the conjugate heat transfer problem un-

der consideration.

1 The validity of this assumption depends directly on the

Prandtl number of the fluid. See e.g. [6] for a detailed

discussion.
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fluid, and for that reason we will assume that the ve-

locity of the fluid is linear in y and constant in x, i.e. that

Uðx; yÞ ¼ oU
oy

����
w

y: ð3Þ

Consequently, the temperature distribution in the fluid

satisfies the following relations

oU
oy

����
w

y
oT
ox

¼ kf
qcp

o2T
ox2

�
þ o2T

oy2

�
;

T ! 0 as x2 þ y2 ! 1:

ð4Þ

As interface condition we assume that all heat sources

are contained in the interval jxj6 ðL=2Þ, i.e. that 2

kf
oT
oy

ðx; 0þÞ ¼ ks
oT
oy

ðx; 0�Þ; as jxj > L
2
: ð5Þ

Furthermore we assume that the heat source distribu-

tion is bounded and known for jxj6 ðL=2Þ. This
knowledge can either be explicit, as in for example [6],

where the heat source distribution is assumed to be

uniform, or implicit, as is the case for example when the

temperature along the heat source is constant. Hot-

films used to measure wall-shear stress are typically of

the constant temperature type, and for that reason we

choose a spatially uniform temperature boundary con-

dition for our numerical simulations. 3 However, the

asymptotic analysis to be presented below, which is

aimed at finding T ðx; 0Þ � TwðxÞ for jxj large, applies to
the more general situation. Specifically, it covers the

case with two heat sources considered in for example

[22,25], however, it must be recalled that an asymptotic

analysis can only be expected to be accurate far from

all sources.

4. Numerical method

For the spatial discretization of (2) and (4), a stan-

dard finite volume method was used. In short, the do-

main was divided into control volumes (CV), and the

governing equations were integrated over each CV,

leading to a balance equation for the fluxes through the

CV faces. The code was validated against an exact so-

lution (a Blasius boundary layer flow with a hot surface)

where the entire fluid–solid interface has constant tem-

perature. A more detailed description of the code can be

found in [5]. When using the code it is apparent that the

boundary conditions introduced where the domain is

truncated is of crucial importance. Carelessly chosen

boundary conditions will redirect the energy, causing

large errors. It will be seen below that all the heat energy

will be transported to infinity by the fluid, and hence the

outflow condition in the fluid must allow for this

transport of energy. Setting such a condition correctly is

quite difficult and instead we chose to circumvent the

problem by neglecting the streamwise conduction in

the fluid term in the fluid equations, which makes the

equation in the fluid parabolic rather than elliptic in the

x-direction, and hence we must not specify any bound-

ary condition on the outflow boundary. Here it must be

stressed that the streamwise conduction in the fluid is

only neglected in the numerically obtained solutions and

that it is retained in the asymptotic analysis below.

Clearly, our numerical solutions are thus not able to

verify the correctness of the asymptotic terms having a

dependence of the streamwise conduction in the fluid.

However, the asymptotic analysis shows that the term of

this kind of the lowest order decays much faster than the

lowest order terms due to convection or conduction in

the solid. Hence, the error due to the neglect of the

streamwise conduction in the fluid is insignificant to the

comparisons presented in Section 6.2.

There may be numerical methods better suited to

solve this problem (see for example [6]), but for our

purpose, which is to test the asymptotic solutions ob-

tained below, this straightforward method seems to be

sufficiently accurate for the domains used.

5. Asymptotic solution to the problem

In this section, we will seek an asymptotic solution to

our conjugate heat transfer problem for jxj large. As-
ymptotic solutions consist of a series of functions, with

the property that as more terms of the series are added

together the difference between the sum and the full

solution decays increasingly quickly with jxj. Asymptotic
series are often divergent, which means that to calculate

the approximate value of the solution for a given value

of x, the closest approximation is obtained after a finite

number of terms, and adding more terms will only in-

crease the error. Indeed, the point with asymptotic so-

lutions is not to represent solutions exactly (which is

almost always better done by for example a Taylor se-

ries), but rather to give a reasonable approximation of

the solution with a very limited number of terms. For a

2 This condition is convenient, but not absolutely necessary,

and it is conceivable that at least part of the analysis presented

here can be extended to the case when the heat source

distribution satisfies a weaker decay property for large jxj.
3 Constant-temperature anemometer implies only temporal

constancy of the sensor resistance. In reality, there is a spatial

distribution of temperature in both the spanwise and stream-

wise directions of the flush-mounted sensor. This spatial

distribution produced on an electrically heated film depends

on the temperature sensitivity of the film’s resistivity, the film’s

thickness and the thermal properties of the film relative to its

mounting substrate. In the present formulation, we neglect such

spatial variations and assume a constant temperature along the

heat source.

2488 C.F. Stein et al. / International Journal of Heat and Mass Transfer 45 (2002) 2485–2500



more complete description of the properties of asymp-

totic series, the reader is refered to for example [4,19].

We begin the analysis by Fourier transforming the

problem in the x-direction, using the definition

T̂T ðn; yÞ ¼
Z þ1

�1
T ðx; yÞe�inx dx: ð6Þ

This transforms the problem in the lower half-plane to

o2T̂T
oy2

� n2T̂T ¼ 0; ð7Þ

T̂T ðn; 0Þ ¼ T̂TwðnÞ; ð8Þ

oT̂T
oy

ðn;�DÞ ¼ 0 8n 2 R: ð9Þ

It is a straightforward task to calculate the solution to

(7)–(9) which is given by

T̂T ðn; yÞ ¼ T̂TwðnÞ
coshðnðy þ DÞÞ
coshðnDÞ : ð10Þ

The Fourier transformed problem in the upper half-

plane is given by

in
oU
oy

����
w

yT̂T ¼ kf
qcp

o2T̂T
oy2

 
� n2T̂T

!
; ð11Þ

T̂T ðn; 0Þ ¼ T̂TwðnÞ: ð12Þ

Since all heat sources are located on the fluid–solid in-

terface, we require that the total heat transfer across a

plane y ¼ constant

ETðyÞ � kf

Z 1

�1

oT
oy

ðx; yÞ
����

����
2

dx ð13Þ

is a non-increasing function of y. In addition

ETðyÞ6ETð0Þ is bounded since the heat source distri-
bution is bounded and has compact support. According

to Plancherel’s formula we thus have that

ETðyÞ ¼
kf
2p

Z 1

�1

oT̂T
oy

ðn; yÞ
�����

�����
2

dn6ETð0Þ: ð14Þ

The Eq. (11) can be rewritten as

o2T̂T
oy2

�
in oU

oy

���
w
qcp

kf
y þ n2

0
@

1
AT̂T ¼ 0: ð15Þ

To simplify the notation, let us introduce the parameter

P � Pe=L2 � oU
oy

����
w

qcpk�1f ;

which contains the physical parameters of the fluid

equation. It is now time to change the independent

variable in (15) to

m ¼ ðiPnÞ1=3y þ ðiP Þ�2=3n4=3; ð16Þ

which transforms (15) into the Airy equation

o2T̂T
om2

� mT̂T ¼ 0: ð17Þ

The general solution to the Airy equation is given by (see

e.g. [1])

T̂T ðn; mÞ ¼ C1ðnÞAiðmÞ þ C2ðnÞBiðmÞ; ð18Þ

where Ai and Bi are Airy functions of the first and

second kind. (m being complex is no complication since
the Airy functions are entire.) Transforming back to y

this is

T̂T ðn; yÞ ¼ C1ðnÞAiððiPnÞ1=3y þ ðiPÞ�2=3n4=3Þ

þ C2ðnÞBiððiPnÞ1=3y þ ðiPÞ�2=3n4=3Þ: ð19Þ

For large y, we have that m � ðiPnÞ1=3y. Now suppose
that we choose the branch cut to be in the second

quadrant, in fact for convenience later we will choose

the branch cut to have the argument p=2þ �, where � is
an arbitrarily small positive number. In this case the

argument of cube root increases from �p=6 to p=6 as n
goes from �1 to þ1, and then we have to leading
order for large y (see e.g. [1])

Ai0ðmÞ � � 1
2
p�1=2m1=4 exp

�
� 2
3
m3=2
�
; ð20Þ

Bi0ðmÞ � p�1=2m1=4 exp
2

3
m3=2

� �
: ð21Þ

We have that for large positive y, m3=2 � ðiPnÞ1=2y3=2
which has a positive real part for n 6¼ 0, and thus we
have that Ai0 ! 0 as y ! þ1 and jBi0j ! þ1 as

y ! þ1. However, from (14) and (19) we see that

ETðyÞ ¼
kf
2p

Z 1

�1
ðPnÞ2=3 C1ðnÞAi0ðmðnÞÞ

��
þ C2ðnÞBi0 m nð Þð Þ

��2 dn: ð22Þ

Hence, C2ðnÞ � 0 on all but a set of measure zero, or else
ET cannot be a non-increasing function of y. (Whether
C2ðxÞ attains non-zero values at a set of measure zero is
immaterial, since these points have no impact on the

behaviour of T in physical space.) If we now impose (12)

we obtain the solution to (11) and (12) which is given by

T̂T ðn; yÞ ¼ T̂TwðnÞ
Ai iPnð Þ1=3y þ ðiP Þ�2=3n4=3
� �

Ai ðiP Þ�2=3n4=3
� � : ð23Þ

Note that T ðx; yÞ and Tw are real and thus

T̂T ð�n; yÞ ¼ T̂T ðn; yÞ ð24Þ

T̂Twð�nÞ ¼ T̂TwðnÞ: ð25Þ
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From these relations we find by differentiation in y and

taking y ¼ 0 that if

sðnÞ ¼ ðiPnÞ1=3
Ai0 ðiP Þ�2=3n4=3
� �

Ai ðiPÞ�2=3n4=3
� � ; ð26Þ

then

sð�nÞ ¼ sðnÞ: ð27Þ

Notice also that

LsðnÞ ¼ ðiPeLnÞ1=3
Ai0 ðiPeÞ�2=3ðLnÞ4=3
� �

Ai ðiPeÞ�2=3ðLnÞ4=3
� � ; ð28Þ

where Pe ¼ PL2 is the Peclet number.
Let us now consider the heat source distribution

�qðxÞ ¼ kf
oT
oy

ðx; 0þÞ � ks
oT
oy

ðx; 0�Þ: ð29Þ

Because of the interface conditions q must be zero for all

x such that jxj > L=2, i.e., q has compact support. The
Paley–Wiener theorem (see e.g. [9]) thus implies that q̂q,
the Fourier transform of q, is an entire function, and

thus it can be represented by a Maclaurin series

q̂qðnÞ ¼
X1
k¼0

akn
k : ð30Þ

On the other hand, q̂q can be calculated from our solu-
tions in the half-planes to yield

�q̂qðnÞ ¼ T̂TwðnÞfkfsðnÞ � ksn tanhðDnÞg: ð31Þ

Hence we can obtain an expression for the Fourier

transform of our unknown function Tw

T̂TwðnÞ ¼
�
P1

k¼0 akn
k

kfsðnÞ � ksn tanhðDnÞ : ð32Þ

4Notice that we can use (28) to rewrite this expression as

T̂TwðnÞ ¼ ð�q̂qðnÞL=ksÞ=

CoðiLnÞ1=3
Ai0 ðiPeÞ�2=3ðLnÞ4=3
� �

Ai ðiPeÞ�2=3ðLnÞ4=3
� �

0
@ � Ln tanh

D
L

Ln

� �1A
ð33Þ

where Co is defined in (1). Since this is a function of Ln
multiplied by L we can replace x by x=L below if we also
replace P by Pe and D by D=L. If the streamwise con-

duction in the fluid (the o2T=ox2-term) is neglected then
the calculations above hold, the only difference being

that the argument of the Airy function and its derivative

becomes exactly zero. In this case it is evident that the

only parameters affecting (33) are the Fourier transform

heat source density distribution divided by the conduc-

tivity of the solid, q̂q=ks, the ratio of the length scales L=D
and Cole’s parameter Co. This establishes that these are

the only parameters affecting the interface temperature

distribution if the streamwise conduction in the fluid is

neglected. However, it is also evident from (33) that

when the streamwise conduction in the fluid is retained

we must add the Peclet number Pe to the list of pa-

rameters affecting the problem. Therefore, in this case,

not much is gained by working with dimensionless pa-

rameters, and we therefore prefer to perform the anal-

ysis directly on the dimensional parameters.

In order to estimate Tw for large jxj, we will study the
regularity properties of T̂TwðnÞ. However, it turns out that
due to the convection, the behaviour for positive and

negative values of x is very different. Since the distri-

bution for negative x, in general, is of minor importance

we will defer this analysis until Section 5.4. For positive

x the decay is algebraic, and our next task is to show

that the singularity at the origin contains all the infor-

mation about the terms dominating the behaviour of Tw
for large x > 0. In order to do this we establish two
technical auxiliary results, Lemmas 1 and 2, the proofs

of which are rather long and therefore they are deferred

to Appendix A.

To ensure that we have no contributions from poles

along the real axis we first formulate the following

lemma.

Lemma 1. For n 6¼ 0 the denominator in (32) is different
from zero regardless of the values of the parameters.

Now let hðnÞ and 1� hðnÞ be a C1 partition of unity,

i.e., non-negative C1 functions such that hðnÞþ
ð1� hðnÞÞ � 1. Furthermore, let hðnÞ ¼ 0 for all

jnj > 2n0 and hðnÞ ¼ 1 for all jnj < n0. We thus have that

TwðxÞ ¼ F�1ðT̂TwðnÞhðnÞÞ þF�1ðT̂TwðnÞð1� hðnÞÞÞ; ð34Þ

where F�1 denotes the inverse Fourier transform.

Our next lemma tells us that for any choice of n0 the
second term decays quickly with x.

Lemma 2. Suppose that q is bounded. Then for any value
of n0 and any positive integer n we have that

F�1 T̂TwðnÞð1
�

� hðnÞÞ
�
ðxÞ ¼ Oðjxj�nÞ ð35Þ

for large jxj.

Henceforth, we will therefore exclusively consider F�1

ðT̂TwðnÞhðnÞÞ for a sufficiently small value of n0. Now since

4 With a0 ¼ 1, ai ¼ 0 for iP 1, this expression is the point
source solution in Fourier space. Unfortunately, there are no

known techniques to perform an inverse Fourier transform of

this expression and hence we have to resort to the asymptotic

technique presented below.
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lim
n!0

ksn tanhðDnÞ
sðnÞnp ¼ 0 ð36Þ

for all p, 06 p < 5
3
, there exists an n� such that for all

n < n� we have that

1

kfsðnÞ � ksn tanhðDnÞ

¼ 1

kfsðnÞ
X1
k¼0

ksn tanhðDnÞ
kfsðnÞ

� �k

; ð37Þ

where we have used the well known formula for the sum

of a geometric series. Hence, for n0 chosen sufficiently
small, we have that

T̂TwðnÞhðnÞ ¼
�
P1

k¼0 akn
k� � P1

k¼0
ksn tanhðDnÞ

kf sðnÞ

� �k
� �

hðnÞ

kfsðnÞ
:

ð38Þ

However, we can also expand sðnÞ and tanhðDnÞ for
small n:

sðnÞ ¼ ðiP Þ1=3 Ai0ð0Þ
Aið0Þ n1=3 1

 
� Ai0ð0Þ

Aið0Þ ðiP Þ
�2=3n4=3

þ 1
2

Aið0Þ
Ai0ð0Þ

 
þ 2 Ai0ð0Þ

Aið0Þ

� �2!
ðiP Þ�4=3n8=3 þ � � �

!
;

ð39Þ

tanhðDnÞ ¼ Dn � D3n3

3
þ � � � : ð40Þ

For the sðnÞ appearing in the denominators in (38) we
can invert the expression in the big brackets, which

leaves us with just one term in the denominators. Con-

sequently, we have achieved a small n expansion of
T̂TwðnÞhðnÞ. This general expression, however, does look
very complicated, so rather than writing it out in full we

will list the four terms of lowest order. In this list of

terms we will find those terms which give the highest

order asymptotic contributions to TwðxÞ for large jxj.
The precise contribution of each of these terms will be

calculated in the subsequent subsections.

The four terms of lowest order of T̂TwðnÞhðnÞ for small
values of jnj are:

1: T̂Tw;1ðnÞ ¼
�a0Aið0Þ

kfðiP Þ1=3Ai0ð0Þ
hðnÞ 1

n1=3
: ð41Þ

From (37) and (40), this, the lowest order term, is

seen to arise from the convection in the fluid.

2: T̂Tw;2ðnÞ ¼
�a1Aið0Þ

kfðiP Þ1=3Ai0ð0Þ
hðnÞn2=3: ð42Þ

This term also arises from the convection in the fluid.

3: T̂Tw;3ðnÞ ¼
�a0
kf iP

hðnÞn: ð43Þ

This term is the lowest order contribution from the

conduction in the fluid. Note, however, that it is

coupled with effects of the convection.

4: T̂Tw;4ðnÞ ¼
�a0ksAi2ð0Þ

k2f ðiP Þ
2=3 Ai0ð0Þ
� �2 hðnÞDn4=3: ð44Þ

This term is lowest order contribution from conduc-

tion of heat through the solid. Once again, it should

be noted that this contribution is coupled with effects

of the convection.

It should be mentioned that the higher order terms in-

clude several terms, which take into effects of the cou-

pling of all three of the involved mechanisms of heat

transfer. The higher order terms are all on the form Cnp

with p > 4=3 and hence their inverse Fourier transforms
will be on the form ~CCx�p�1. Consequently, they are of

limited importance for large positive values of x.

5.1. The asymptotic contribution to TwðxÞ for large x > 0

arising from convective terms

Convection in this case acts only to the right, i.e., we

should only get a contribution for positive values of x.

At this stage remember that we have chosen the branch

line to have the argument p=2þ �, where � is arbitrarily
small. It turns out, however, that the presence of the �
does not affect any of the calculations below, and hence

we suppress it in the calculations below in order to

simplify the calculations somewhat.

Our aim is to calculate the asymptotic behaviour of

� 1
2p

Z 1

�1

ajAið0Þ
kfðiPÞ1=3Ai0ð0Þ

hðnÞnj�1=3einx dn ð45Þ

for j ¼ 0; 1.
The way one typically calculates the asymptotic ex-

pansion of integrals like (45) is well described for ex-

ample in [19]. When x > 0 one deforms the integral
contour so that it runs along both sides of the branch

line (the imaginary axis). The two half-contours are then

joined by a small circle around the singularity. Had we

done this for x < 0 the same procedure would have been
repeated in the lower half-plane where there is no branch

line to avoid, and hence there would have been no as-

ymptotic contributions. All the deformations needed are

then justified using Cauchy’s theorem. Unfortunately,

however, this requires the integrand to be analytic in

some neighbourhood of the upper half-plane, and in our

case this is not so due to the presence of hðnÞ, which
cannot be chosen to be real analytic.

Nevertheless, we must deform our contour and we

must devote some effort into arguing why we can do so.

Firstly, if jnj < n0 we have that hðnÞ � 1, and hence it
may be extended analytically to be identically one in any

strip jRnj6 n1 < n0, and thus we may deform the

C.F. Stein et al. / International Journal of Heat and Mass Transfer 45 (2002) 2485–2500 2491



contour in this strip. In fact, we will deform it to the

contour shown in Fig. 2.

In Appendix A we will prove the following lemma,

which shows the suitability of this choice of integration

contour.

Lemma 3. Suppose that pðnÞ is an analytic function in a
neighbourhood of Iþ1 [ I�1 [ Iþ2 [ I�2 . With the contour
chosen as in Fig. 2 we have for any integer n that

1

2p

Z
Iþ
1
[I�
1
[Iþ
2
[I�
2

hðnÞpðnÞeinx dn � Oðx�nÞ: ð46Þ

It is clear that this lemma is applicable for any function

pðnÞ ¼ np since they are analytic except along the branch

cut, which is disjoint from Iþ1 [ I�1 [ Iþ2 [ I�2 .
All that remains is thus to calculate the integral along

I0, but along this contour hðnÞ � 1 and we have the
situation in [19] except that the integration is only along

a contour of finite length. However, it is a straightfor-

ward task to carry out Murray’s analysis in this case

since the critical element is Watson’s lemma (see e.g.

[19]), which shows that the asymptotic contributions all

arise in the vicinity of the origin.

Hence, for x > 0 we have that for any integer n

F�1ðT̂Tw;1ÞðxÞ �
a0

pkfP 1=3
Cð1=3Þ31=6

2

1

x2=3
þ Oðx�nÞ; ð47Þ

F�1ðT̂Tw;2ÞðxÞ �
�ia1

pkfP 1=3
Cð1=3Þ
35=6

1

x5=3
þ Oðx�nÞ; ð48Þ

where we have used that

Aið0Þ
Ai0ð0Þ ¼ � Cð1=3Þ

31=3Cð2=3Þ : ð49Þ

To interpret these results we must calculate a0 and a1 in
terms of physical quantities. However, from (29) and

(30) we have that

a0 ¼ q̂qð0Þ ¼
Z 1

�1
f ðxÞdx

¼ �
Z 1

�1
kf
oT
oy

ðx; 0þÞ
�

� ks
oT
oy

ðx; 0�Þ
�
dx

� QTOT; ð50Þ

ia1 ¼ iq̂q0ð0Þ ¼
Z 1

�1
xf ðxÞdx

¼ �
Z 1

�1
x kf

oT
oy

ðx; 0þÞ
�

� ks
oT
oy

ðx; 0�Þ
�
dx

¼ Qm1; ð51Þ

where QTOT denotes the total amount of heat energy
released by the hot-film, and Qm1 is the first moment of
the heat source distribution. Hence, if the heat produc-

tion is symmetric with respect to the centre of the hot-

film, and we choose that centre to be the origin, we find

that a1 ¼ 0.
To conclude this subsection, let us recall the main

finding of this subsection, which undoubtedly is that we

have found that the leading order asymptotic contribu-

tion of convection to the heat distribution along the

surface for x > 0 is given by

Tw;convðxÞ �
QTOT

pk2=3f
oU
oy

���
w
qcp

� �1=3 Cð1=3Þ31=6
2

1

x2=3

� Qm1

pk2=3f
oU
oy

���
w
qcp

� �1=3 Cð1=3Þ
35=6

1

x5=3

þ O
1

x8=3

� �
: ð52Þ

If we use Cole’s parameter Co we can rewrite this as

Tw;convðxÞ �
Cð1=3Þ31=6
2p

QTOT
ksCo

x
L

� ��2=3
� Cð1=3Þ
35=6p

� Qm1
ksCo

x
L

� ��5=3
þ O

x
L

� ��8=3� �
: ð53Þ

5.2. The asymptotic contribution to TwðxÞ for large x > 0

arising from terms due to conduction in the fluid

Unlike convection, conduction in the fluid and con-

duction in the solid act in both directions, the asymp-

totic effects of these terms are, however, strongly

coupled with the convection, since the latter is the most

Fig. 2. A typical choice of the integration contour. I0 is the dot-
dashed part of the contour, i.e., the part in the strip on both

sides of the imaginary axis as well as the small circle around the

origin. Iþ2 is the part of the contour in the right half-plane which
is along the real axis. Iþ1 is the part of the contour in the right
half-plane that begins with a semi-circle connecting the two

other parts. I�1 and I�2 are defined analogously in the left half-
plane.
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efficient way to transfer heat to infinity. For this reason,

which mathematically manifests itself in the shape of the

branch line in the upper half-plane, there will not be any

algebraic asymptotic contributions from these terms for

negative x.

The first term arising from terms due to conduction

in the fluid is

T̂Tw;3ðnÞ ¼
a0

kf iP
hðnÞn; ð54Þ

which is a C1
0 function, and hence it belongs to the

Schwartz class of functions S, which consists of C1

functions for which the function and all its derivatives

decay faster than any polynomial. However, the Fourier

transform maps this class of functions into itself (see e.g.

[9]), and thus this term will be of Oðx�nÞ for any positive
integer n.

There are, however, asymptotically more significant

effects of conduction in the fluid. In fact, there is a term

of order Oðx�10=3Þ.

5.3. The asymptotic contribution to TwðxÞ for large x > 0

arising from terms due to conduction in the solid

For the same reasons as for the conduction in the

fluid above, there will not be any algebraic asymptotic

contribution for negative x in this case either. How-

ever, if we would have replaced the slab of solid by a

semi-infinite solid kept at temperature zero at infinity,

the conduction in the fluid–solid interaction weakens

sufficiently to enable the conduction in the solid to

give an algebraic decay for the temperature for

negative x.

However, our aim in this subsection is to calculate

the asymptotic contribution for large positive x of

� 1
2p

Z 1

�1

a0ksDAi2ð0Þ
k2f ðiP Þ

2=3 Ai0ð0Þð Þ2
hðnÞn4=3einx dn: ð55Þ

For this integral we can use the same technique as for

the convective contributions. After following the same

contour, invoking Lemma 3 and using the result in [19]

we will find that

F�1ðT̂Tw;4ÞðxÞ �
a0ks

pk2f P 2=3
2Cð1=3Þ3

313=6Cð2=3Þ2
D
x7=3

þ Oðx�nÞ; ð56Þ

� QTOTks
pk2f P 2=3

2Cð1=3Þ3

313=6Cð2=3Þ2
D
x7=3

þ Oðx�nÞ: ð57Þ

This result can be expressed in terms of Cole’s parameter

Co and D=L:

F�1ðT̂Tw;4ÞðxÞ �
2Cð1=3Þ3

313=6pCð2=3Þ2
QTOT
ksCo2

D
L

x
L

� ��7=3
þ O x�nð Þ: ð58Þ

5.4. The temperature distribution for large negative values

of x

None of the terms considered above gives any

asymptotic contribution for large negative x. If we

substitute �ig for n in the denominator in (32) it
becomes

kf gPð Þ1=3
Ai0 � P�2=3g4=3
� �

Ai � P�2=3g4=3ð Þ þ ksg tan Dgð Þ: ð59Þ

It is clear that this expression has a zero, g0, somewhere
between zero and p=D. This pole will give an asymptotic
contribution to the interface temperature of the order

expð�g0xÞ. Unfortunately, in this general case we have
not been able to extend Lemma 1 to prove that there are

no poles for (32) in lower half-plane outside the negative

imaginary axis, and therefore it could well be that the

asymptotic behaviour is dominated by some other pole.

However, if we ignore the streamwise conduction in the

fluid, i.e., the o2T=ox2 term, we will instead of sðnÞ obtain

s0ðnÞ ¼ ðiPnÞ1=3 Ai0ð0Þ
Aið0Þ ð60Þ

and in this case we are able to prove the following

lemma.

Lemma 4. All the zeros of the function kfs0ðnÞ � ks
n tanh n in the lower half-plane are on the negative
imaginary axis.

The poles on the imaginary axis are given by the solu-

tions to the transcendental equation

tan Dgð Þ ¼ kf
ks

P 1=3
31=3Cð2=3Þ

C 1=3ð Þ g�2=3: ð61Þ

There are countably many such zeros gj. If we use this

information together with the previous lemma we have

that for negative x

TwðxÞ ¼
1

2p

Z 1

�1
T̂TwðnÞeinx dn; ð62Þ

¼ i
X1
j¼1
Resn¼�igj

T̂TwðnÞeinx
h i

: ð63Þ

If we neglect all but the lowest order contribution we

find that for large negative x we only have to calculate
the residue for the first zero. This can be done by stan-

dard techniques, and we will only present the result in

the case when

kf
ks

P 1=3
22=331=3Cð2=3Þ

p2=3Cð1=3Þ D2=3 � 1: ð64Þ

In this case the first zero occurs approximately for

g1 � p=ð2DÞ, and it can be seen that if we include the
highest order expression in (64) the residue becomes
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Resn¼�ig1 �
ksp1=3Cð1=3Þ2

ik2f P 2=3D4=332=321=3Cð2=3Þ
2
q̂q
�
� i p
2D

�

� exp px
2D

� �
ð65Þ

and consequently if (64) holds we have for large negative

x

TwðxÞ �
ksp1=3Cð1=3Þ2

k2f P 2=3D4=332=321=3Cð2=3Þ
2
q̂q
�
� i p
2D

�
exp

px
2D

� �
:

ð66Þ

If L=D � 1 then
q̂qð�ip=ð2DÞÞ � q̂qð0Þ ¼ QTOT:

In this case, (66) can be expressed in terms of Cole’s

parameter and D=L as

TwðxÞ �
p1=3Cð1=3Þ2

32=321=3Cð2=3Þ2
QTOT

ksCo2
D
L

� ��4=3

� exp p
2

L
D

x
L

� �
: ð67Þ

6. Interpretations and comparisons

6.1. Some features of the solution

In the previous section we found that the asymptot-

ically leading order term was directly proportional to the

total heat production and that it was due to convection.

The first comment we will make here is that in the pre-

sent problem we cannot distinguish between total heat

production and the portion of the heat which enters a

fluid. In fact, since convection is the most efficient

mechanism to transfer heat to infinity all heat will

eventually escape that way. To see this formally, let us

consider the total net heat flux to the solid Qs

Qs ¼ �
Z 1

�1
ks
oT
oy

x; 0�ð Þdx

¼ �ks lim
n!0

T̂TwðnÞn tanhðDnÞ ¼ 0; ð68Þ

where the last inequality is a direct consequence of (41)–

(44). Needless to say if the solid has high thermal con-

ductivity compared to the fluid the length scale at which

almost all heat has escaped to the fluid can be very large.

Another feature of our solution worth mentioning is

the absence of both a temperature and a length scale.

For the temperature it is of course convenient to use the

linearity of the system in temperature and let the tem-

perature at a certain fixed point be a reference, but our

formulae are non-dimensional and could thus be used to

predict absolute values as well. The absence of a length

scale is perhaps more striking, since the problem has a

distinct candidate for such a scale, i.e., the length of the

hot-film, L. However, since our temperature is propor-

tional to the total heat flux, i.e., the integral of the heat

flux distribution over the length of the film, we have in a

sense hidden the dependence of the length of the film.

We could, of course, have formulated the result in terms

of QL, where Q is the average total heat production
along the hot-film.

Using a model with no streamwise conduction in the

fluid and an adiabatic wall, Liu et al. [14] calculated the

asymptotic temperature distribution of a constant tem-

perature hot-film. Although it seems difficult to extend

their method to include conduction in the solid, our

solutions should agree to the highest order, since this

term only involves convective effects. If we place the

origin at the trailing edge of the hot-film and compare

our coefficients we obtain the following formula:

33=2

4p
L2=3DT ¼ QTOT

pk2=3f
oU
oy

���
w
qcp

� �1=3 Cð1=3Þ31=6
2

; ð69Þ

() oU
oy

����
w

¼ 8

81
Cð1=3Þ3 1

L2k2f qcp

QTOT

DT

� �3
; ð70Þ

¼ 8

81
Cð1=3Þ3 L

k2f qcp

Q
DT

� �3
: ð71Þ

This result resembles the part of a formula presented,

e.g., in [3], that is the contribution from the linear term

of the velocity profile. It should be stressed, however,

that [3] obtained their formula with a completely differ-

ent technique, and with somewhat different assumptions.

6.2. Numerical comparisons

To test as many features as possible of the asymptotic

solution, we choose to verify them for a case with large

Cole number Co, in which case the importance of con-

duction in the solid is comparatively small. Specifically,

the case we choose for extensive calculations had

Co � 58. This would resemble the situation for a laminar
water flow over a silicon surface. The size of the domain

was 700� L in the upstream direction and 1000� L
downstream. The thickness of the solid was chosen to be

D � 39� L. In Fig. 3 the result of this comparison be-
tween the asymptotic and numerical solution is shown.

To emphasize the algebraic decay of the temperature

profile downstream of the heat source, we present this

comparison in Fig. 3(a) in a log–log graph, and as is seen

the agreement is good. Upstream of the heat source the

temperature profile decays exponentially, and for that

reason the comparison in this region as shown in Fig. 3(b)

is presented in a lin–log graph. Once again the agreement

between the asymptotic and numerical solutions is good.

In Fig. 3(c) the result upstream and downstream of the

heat source is shown in one lin–lin graph. In this figure
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we have only shown the region in the vicinity of the heat

source and here we can notice a slight deviation due to

higher order contributions.

To test the asymptotic formulae in a more demand-

ing case we choose to perform computations for

Co � 0:22. In this case, we see for the downstream
temperature profile, which is presented in Fig. 4 that

some distance away from the heat source, the agreement

between the asymptotic and numerical solution is satis-

factory. That the distance before which the leading order

asymptotic solution describes the solution accurately

increases with decreasing Cole number is quite evident

from the analysis above.

7. Conclusions

In this paper, we have presented an asymptotic so-

lution to the conjugate heat transfer problem with a

flush-mounted heat source on the fluid–solid interface,

in the case that the bottom of the solid is perfectly in-

sulated and the velocity profile in the fluid is linear. The

lowest order terms of the asymptotic solution can be

naturally classified into contributions from pure con-

vection, from the interaction of convection and the

Fig. 4. A comparison between the numerical (the solid lines)

and the highest order asymptotic (the dashed lines) solutions

downstream of the heat source for a case when Co � 0:22.

Fig. 3. A comparison between the numerical (the solid lines) and the highest order asymptotic (the dashed lines) solutions for a case

when Co � 58 and D=L � 39. In (a) the solutions are compared downstream of the heat source, in (b) they are compared upstream of
the heat source and in (c) the temperature profiles on both sides of the source are shown.
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conduction in the solid and from the interaction of

convection and the conduction in the fluid. It was found

that downstream of the heat source the two leading

terms of the asymptotic expansion come from pure

convection, and that the leading term decays as Oðx�2=3Þ,
which confirms the result from the analysis by [14] in the

case of an adiabatic wall. However, we have also seen

that the third term in the asymptotic expansion of the

interface temperature involves conduction in the solid,

and hence this contribution could not have been cap-

tured by the technique used in [14]. If we neglect the

conduction in the fluid we have been able to find the

asymptotic solution upstream of the heat source as well,

and in this case we find that the temperature decays

exponentially with the distance from the heat source.

Our results have been compared with numerical solu-

tions to the problem with good agreement.

Acknowledgements

The authors would like to acknowledge financial

support from the Swedish Research Council for Engi-

neering Sciences (TFR).

Appendix A. Proofs of technical lemmata

A.1. Proof of Lemma 1

We will prove that the expression sðnÞ is never real
for non-zero values of n. Since all other terms are real
this will clearly suffice to prove the lemma.

Because of (27) it suffices to consider n > 0. In this
case we have that

argðiPnÞ1=3 ¼ p
6
; ðA:1Þ

argððiP Þ�2=3n4=3Þ ¼ � p
3
: ðA:2Þ

For every positive n there are positive, real numbers x
and q such that

sðnÞ ¼ q exp i
p
6

� �Ai0 x exp � ip
3

� �� �
Ai x exp � ip

3

� �� � : ðA:3Þ

By successively using well known formulae for Airy and

Bessel functions (see e.g. [1]) we can make the following

transformations:

sðnÞ ¼ �q
ffiffiffi
x

p K2=3 23x exp � ip
2

� �� �
K1=3 23x exp � ip

2

� �� � ; ðA:4Þ

sðnÞ ¼ �q
ffiffiffi
x

p
exp i

p
6

� �H ð1Þ
2=3

2
3
x

� �
H ð1Þ
1=3

2
3
x

� � ; ðA:5Þ

sðnÞ ¼ �q
ffiffiffi
x

p exp � ip
3

� �
J2=3 23x
� �

� exp ip
3

� �
J�2=3 23x

� �
exp � ip

6

� �
J1=3 23x
� �

� exp i p
6

� �
J�1=3 23x

� � :
ðA:6Þ

However, we know that the Bessel function of the first

kind is real valued for real valued arguments, and hence

we have that the expression is real if and only if the

quotient of the imaginary and real part of the nominator

is the same as that of the denominator. Hence, all that

remains to prove is that for all positive values of x

tan
p
3

� � J2=3 23x
� �

þ J�2=3 23x
� �

J2=3 23x
� �

� J�2=3 23x
� �

6¼ tan p
6

� � J1=3 23x
� �

þ J�1=3 23x
� �

J1=3 23x
� �

� J�1=3 23x
� � : ðA:7Þ

All that remains now is therefore to prove that there are

no real and positive solutions to (A.7). By simple algebra

it is shown that this is equivalent to proving the absence

of real and positive solutions to

J2=3ðsÞJ�1=3ðsÞ � J�2=3ðsÞJ1=3ðsÞ

þ 1
2

J�2=3ðsÞJ�1=3ðsÞ
�

� J2=3ðsÞJ1=3ðsÞ
�
¼ 0: ðA:8Þ

However, if we now go back to expressing this in terms

of Airy functions and their derivatives we find that (A.8)

has no real and positive solutions if there are no real

negative solutions to

3 AiðsÞAi0ðsÞ
�

þ BiðsÞBi0ðsÞ
�
¼ 0; ðA:9Þ

i.e., that the derivative of the modulus of the Airy

functions is non-zero on the negative half-axis (this is

trivially true on the positive half-axis, but this fact has

no bearing on our proof).However, according to [23]

one has the following expression for the modulus of the

Airy functions on the negative half-axis. ðz > 0Þ

Ai2ð�zÞ þ Bi2ð�zÞ ¼ 1

p3=2

Z 1

0

t�1=2 exp
�
� zt � 1

12
t3
�
dt:

ðA:10Þ

Hence we have that

Aið�zÞAi0ð�zÞ þ Bið�zÞBi0ð�zÞ

¼ 1

2p3=2

Z 1

0

t1=2 exp
�
� zt � 1

12
t3
�
dt: ðA:11Þ

However, the integrand is positive for all positive values

of z, and thus we have shown that for all real and neg-

ative values of s

AiðsÞAi0ðsÞ þ BiðsÞBi0ðsÞ > 0; ðA:12Þ

which rules out the possibility of having real and nega-

tive solutions to (A.9), and consequently the lemma is

established. �
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A.2. Proof of Lemma 2

Since q is bounded and has compact support we have

that xpqðxÞ 2 L2ðRÞ for all positive values of p. Hence we
have that

ð�iÞp d

dn

� �p

q̂qðnÞ 2 L2ðRÞ \ AðCÞ; ðA:13Þ

where AðCÞ denotes the space of entire functions.
We have that

T̂TwðnÞð1� hðnÞÞ ¼ q̂qðnÞð1� hðnÞÞ
kfsðnÞ � ksn tanhðDnÞ : ðA:14Þ

Hence, Leibniz’ rule implies that for any non-negative

integer q we have that

d

dn

� �q

ðT̂TwðnÞð1� hðnÞÞÞ

¼
Xq

k¼0

q
k

� � d

dn

� �k

q̂qðnÞ d

dn

� �q�k

� 1� hðnÞ
kfsðnÞ � ksn tanhðDnÞ

� �
: ðA:15Þ

We now claim that we have for any non-negative integer

m that

d

dn

� �m
1� hðnÞ

kfsðnÞ � ksn tanhðDnÞ

� �
2 L2ðRÞ: ðA:16Þ

If we assume that this claim is true it directly follows

from (A.13), H€oolder’s inequality (see e.g. [8]) and the
linearity of the Lp spaces that

d

dn

� �q

ðT̂TwðnÞð1� hðnÞÞÞ 2 L1ðRÞ ðA:17Þ

for any non-negative integer q. According to a well-

known theorem in Fourier analysis (see e.g. [2]) this

implies the lemma. Consequently, it suffices for us to

prove the claim (A.16).

To this end, let us start by noting that the expression

in (A.16) is bounded. For non-zero values of n this
follows from Lemma 1 and the fact that hðnÞ, sðnÞ and
n tanhðDnÞ all are C1 functions outside the origin.

Moreover, since ð1� hðnÞÞ � 0 in a neighbourhood of
the origin it follows that the expression in (A.16) is

bounded there as well. As a consequence, the claim ex-

clusively concerns decay at infinity. Remember that

ð1� hðnÞÞ � 1 for all n > 2n0. This implies that for these
values of n we have that

d

dn

� �m
1� hðnÞ

kfsðnÞ � ksn tanhðDnÞ

� �

¼ d

dn

� �m
1

gðnÞ

� �
; ðA:18Þ

where gðnÞ ¼ kfsðnÞ � ksn tanhðDnÞ.

The following asymptotic property of sðnÞ will be
established in a separate lemma.

Lemma 2a. We have that

sðnÞ � �jnj þ O n�1� �
; ðA:19Þ

s0ðnÞ � �signðnÞ þ O n�2� �
; ðA:20Þ

sðmÞðnÞ � ð�1Þmþ1 iP
4

m!n�m�1

þ Oðn�m�3Þ for mP 2; ðA:21Þ

which should be interpreted as saying that the absolute
value of the difference between the left-hand side and the
first term on the right-hand side is bounded by a constant
times the function inside the big ordo for large values of jnj.

Note that the rate of decay of the leading order term

increases as m increases, and in particular notice the
extra increase in decay rate as m increases from 1 to 2.
In addition to this result we need the simple fact that

for any integer N > 0 we have that

dm

dnm ðn tanhðDnÞÞ �
jnj þ O n�N� �

for m ¼ 0;
signðnÞ þ Oðn�N Þ for m ¼ 1;
Oðn�N Þ for mP 2:

8<
:

ðA:22Þ

If we combine Lemma 2a and (A.22) we find that

gðmÞðnÞ

�
�ðkf þ ksÞjnj þ Oðn�1Þ for m ¼ 0;
�ðkf þ ksÞsignðnÞ þ Oðn�2Þ for m ¼ 1;
ð�1Þmþ1ðiP=4Þm!n�m�1 þ Oðn�m�3Þ for mP 2:

8<
: :

ðA:23Þ

By induction it is readily established that

dm

dnm
1

gðnÞ

� �
¼
P

p ap;m
Qm

j¼1 g
ðpjÞðnÞ

ðgðnÞÞmþ1
; ðA:24Þ

where the ap;m are coefficients and p ¼ ðp1; . . . ; pmÞ is a
vector of non-negative integers such that 06 p16 � � �
6 pm 6m, and

Pm
j¼1 pj ¼ m. Since gðmÞ decreases as n�m�1

for mP 2, but only as n1�m for m ¼ 0; 1, the decay rate
of the nominator in (A.24) will be minimal if all the pi’s

are one. Hence, for all p satisfying the conditions above

we have that

Ym
j¼1

gðpjÞðnÞ
�����

�����6 ðkf þ ksÞm þ Oðn�2Þ: ðA:25Þ

This implies that for each m we can pick a value Cm such

that there exists an nm such that

X
p

ap;m
Ym
j¼1

gðpjÞ

�����
�����6Cm for jnj > nm: ðA:26Þ
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However, from this, (A.24) and (A.23) we have that

dm

dnm
1

gðnÞ

� �����
����6 Cm

ðkf þ ksÞmþ1jnjmþ1
for jnj > nm:

ðA:27Þ

This result combined with the fact that expression in

(A.16) is bounded proves that the claim in (A.16) is true,

provided that we can prove Lemma 2a. �

A.3. Proof of Lemma 2a

By differentiation of sðnÞ and utilization of Ai00ðzÞ ¼
zAiðzÞ we find that sðnÞ satisfies the ODE

s0ðnÞ ¼ 4

3iP
ðn2 � s2ðnÞÞ þ sðnÞ

3n
: ðA:28Þ

From [1] we find that for large jzj, j arg zj6 p=3 we have
that

AiðzÞ � 1
2
p�1=2z�1=4e�f

X1
k¼0

ð�1Þkckf
�k ; ðA:29Þ

Ai0ðzÞ � 1
2

p�1=2z1=4e�f
X1
k¼0

ð�1Þkdkf
�k ; ðA:30Þ

where f ¼ 2
3
z3=2, c0 ¼ d0 ¼ 1,

ck ¼
Cð3k þ 1=2Þ
54kk!Cðk þ 1=2Þ

and dk ¼ �ðð6k þ 1Þ=ð6k � 1ÞÞck . These expressions

mean that the absolute value of the difference between

the function and a partial sum is smaller than the first

omitted term [9], but below we will only require that the

absolute value of this difference is bounded by the first

omitted term multiplied by some positive constant.

Let us now restrict ourselves to the case n > 0 (the
negative case can be treated analogously. In fact only

some signs have to be changed for the subsequent

analysis to hold in this case as well). When these as-

ymptotic expansions are substituted into (26) and the

formula for the sum of a geometric series is used we find

that there exists coefficients ak such that

sðnÞ �
X1
k¼�1

akn
�1�2k ; ðA:31Þ

where a�1 ¼ �1. In principle, we could calculate all
coefficients directly, but the procedure is quite

cumbersome. We should note that the asymptotic

property is preserved in the division since both the

nominator (except for a factor of n�1) and the de-

nominator are expanded in terms of the asymptotic

sequence fn�2pg1p¼0 and since the denominator has a
non-zero constant term (see e.g. the Corollary to

Theorem 1.7.4 in [4]). Hence the statement for sðnÞ has
been established.

Let us substitute this expression formally into (A.28)

to find that

s0ðnÞ �
X1
k¼�1

ak

3

 
� 4

3iP

Xkþ1
p¼�1

arak�r

!
n�2�2k ; ðA:32Þ

where the fact that a�1 ¼ �1 has cancelled out the n2-
term. The asymptotic properties are retained since we

have only performed simple algebraic operations (addi-

tion, multiplication and division by n) of sequences ex-
panded in terms of the common asymptotic sequence,

fn�2pg1p¼0. The only problem is that if the rest term of
sðnÞ is Oðn�N Þ then the corresponding term in the as-
ymptotic expansion for s0ðnÞ will be Oðn1�N Þ since sðnÞ is
of OðnÞ, but this is of little consequence since N can be
chosen arbitrarily.

Consider now sðnÞ þ n. From (A.31) we have that
sðnÞ þ n can be expanded asymptotically in terms of the
asymptotic sequence fn�1�2kg1k¼0. The terms of this se-
quence are differentiable and they all vanish at infinity.

Furthermore, these properties are shared by the sequence

ð
�

� 1� 2kÞn�2�2k�1
k¼0 ¼

d

dn
n�1�2k

� �1

k¼0
:

In addition, the terms of this second sequence are all

negative for n > 0, and since (A.32) tells us that s0 can be
expanded in terms of this sequence, then [4, Theorem

1.7.7] implies that we may differentiate the asymptotic

series term-by-term, i.e., that

s0ðnÞ �
X1
k¼�1

akð�1� 2kÞn�2�2k : ðA:33Þ

This implies the statement for s0ðnÞ and in addition that
the following recursive relation must hold for the coef-

ficients ak :

akð�1� 2kÞ ¼
ak

3

 
� 4

3iP

Xkþ1
r¼�1

arak�r

!
: ðA:34Þ

If we use the fact that a�1 ¼ �1 we find that this can be
rearranged to yield

akþ1 ¼
1

2

Xk

r¼0
arak�r �

iP
4
ð3k þ 2Þak : ðA:35Þ

This is a far quicker way to calculate the ak ’s than to use

the expansion for the Airy functions. For example, this

may be used to calculate a0 ¼ �iP=4.
In order to conclude the proof of the lemma we must

now extend these results to higher derivatives of s, in fact

we will prove that for mP 2 we have that

sðmÞðnÞ �
X1
k¼0

akð�1Þn
ðm þ 2kÞ!
ð2kÞ! n�1�2k�m ðA:36Þ

from which the lemma follows since a0 ¼ �iP=4.
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The only things which could cause difficulties are the

n2 term in (A.28) and the presence of the first terms in the
expansions for sðnÞ and s0ðnÞ. However, these difficulties
cancel each other. To see this let us assume that the lemma

holds for s; s0; . . . ; sðmÞ. Consequently, there exists an as-
ymptotic expansion for the mth derivative of n2 � s2ðnÞ.
However, if we use the fact that a�1 ¼ �1 we find that

n2 � s2ðnÞ � 2a�1a0 þ ða20 þ 2a�1a1Þn
�2 þ � � � : ðA:37Þ

Now if mP 1 there are bk such that

dm

dnm ðn2 � s2ðnÞÞ �
X1
k¼0

bkn
�m�2�2k : ðA:38Þ

Similarly, the asymptotic expansion

sðnÞ
n

� a�1 þ a0n
�2 þ � � � ðA:39Þ

implies that the mth derivative of this expression has the

expansion

dm

dnm
sðnÞ
n

� �
�
X1
k¼0

ckn
�m�2�2k ðA:40Þ

for some ck . By differentiating (A.28) m times we find

that (A.38) and (A.40) imply that sðmþ1ÞðnÞ has an as-
ymptotic expansion of the desired form. Hence, by [4,

Theorem 1.7.7] we find that the asymptotic expansion

for sðmþ1ÞðnÞ is given by term-by-term differentiation of
the expansion for sðmÞðnÞ. Consequently, (A.36) follows
by induction. This concludes the proof of the

lemma. �

A.4. Proof of Lemma 3

We will prove that

1

2p

Z
Iþ
1
[Iþ
2

hðnÞpðnÞeinx dn � Oðx�nÞ ðA:41Þ

and the same result in the left half-plane is established

analogously.

We are confined to the real axis along Iþ2 and there-
fore we will use the method of stationary phase there.

On Iþ1 , however, we will use the method of steepest de-
scent, which requires analyticity.

Suppose that the point of intersection between Iþ1 and
Iþ2 is ny. Since the integrand is C1 and since hðnÞ van-
ishes for all n > 2n0 we have that (see e.g. [4, Example
3.2.2]) for any integer N

1

2p

Z
Iþ
2

hðnÞpðnÞeinx dn �
XN
n¼0

ð�1Þnþ1

ðixÞnþ1
pðnÞðnyÞeixny

þ Oðx�N Þ; ðA:42Þ

where we have also used the fact that hðnÞ � 1 in a
neighbourhood of ny.

When applying the method of steepest descent (see

e.g. [4,19]) to the integral along Iþ1 we find that there are
no other critical points than the end points, ny and nA

(the intersection of Iþ1 and I0). Furthermore, our contour
already passes through these points parallel to the lines

of steepest descent. Hence we may apply Watson’s

lemma in the neighbourhoods of the end points to ob-

tain for any integer N

1

2p

Z
Iþ
1

hðnÞpðnÞeinx dn

� �eixny
XN
n¼0

ð�1Þnþ1pðnÞðnyÞ
ðixÞnþ1

þ eixnA XN
n¼0

ð�1Þnþ1pðnÞðnAÞ
ðixÞnþ1

þ Oðx�N Þ: ðA:43Þ

If we sum (A.42) and (A.43) we obtain

1

2p

Z
Iþ
1
[Iþ
2

hðnÞpðnÞeinx dn

� eixnA XN
n¼0

ð�1Þnþ1pðnÞðnAÞ
ðixÞnþ1

þ Oðx�N Þ ðA:44Þ

for any integer N. However, nA has a positive imaginary

part and hence the first terms on the right-hand side are

decreasing exponentially with x. This concludes the

proof of the lemma. �

A.5. Proof of Lemma 4

If we substitute �ig for n and use (60), we obtain

kfs0ð�igÞ þ ksig tanhðigÞ

¼ kfðgP Þ1=3
Ai0ð0Þ
Aið0Þ þ ksg tanðDgÞ: ðA:45Þ

This function is zero if and only if

tanðDgÞ ¼ � kf
ks

P 1=3
Ai0ð0Þ
Aið0Þ g�2=3: ðA:46Þ

For this function to be zero the difference of the argu-

ments of the left- and right-hand sides must be a mul-

tiple of 2p. Suppose that there is a zero g� with argument

p 6¼ 0. In this case the right-hand side has the argument
�2p=3 (note that Ai0ð0Þ=Aið0Þ < 0). The argument of the
left-hand side is given by

arg tanðDgÞ ¼ arctan sinh 2I Dgð Þ
sin 2RðDgÞ

� �
if RðDgÞP 0;

ðA:47Þ

arg tanðDgÞ ¼ arctan sinh 2IðDgÞ
sin 2RðDgÞ

� �
þ psignðIðDgÞÞ otherwise: ðA:48Þ
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From these expressions we see that the argument for

fixed p varies with Djg�j, however, we also see that

jpj6 arg tanðDgÞj j6 p
2
if jpj6 p

2
; ðA:49Þ

p
2
6 arg tanðDgÞj j6 jpj if jpj > p

2
: ðA:50Þ

Hence for the difference of the arguments of the left and

right hand sides to be a multiple of 2p we clearly cannot
have that jpj6 p=2. �
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